Abstract

Commentary

What is the future for Scapholunate interosseous ligament reconstruction?

Amelia Carr, Saso Ivanovski, Randy Bindra and Cedryck Vaquette*

Published: 31 December, 2018 | Volume 2 - Issue 1 | Pages: 004-007

This opinion paper provides a summary of the current reconstructive surgical techniques for the scapholunate interosseous ligament (SLIL) and critically highlights their benefits and shortcomings. Due to limited success with direct repair of the ligament, current practice focuses on achieving biomechanical stabilization and does not allow for tissue regeneration to occur. In addition, the biomechanical behaviour of the ligament is still poorly described and understood, resulting in a very large variation in published mechanical parameters. Therefore, a thorough understanding of the biomechanics of the joint, via both experimental testing and numerical modelling is necessary for enabling the design of the next generation of implants in order to address mechanical stabilisation and regeneration.

Read Full Article HTML DOI: 10.29328/journal.aceo.1001004 Cite this Article Read Full Article PDF

Keywords:

Scapholunate interosseous ligament; Finite element analysis; 3D-printing

References

  1. Berger RA. The gross and histologic anatomy of the scapholunate interosseous ligament. J Hand Surg Am. 1996: 21: 170–178. Ref.: https://goo.gl/Mv8ocm
  2. Avery DM 3rd, Rodner CM, Edgar CM. Sports-related wrist and hand injuries: A review. J Orthop Surg Res. 2016; 11: 1–15. Ref.: https://goo.gl/jnGYRC
  3. Izadpanah A, Kakar SS. Acute Scapholunate Ligament Injuries: Current Concepts. Oper Tech Sports Med. 2016; 24: 108–116. Ref.: https://goo.gl/jCMsmQ
  4. Nikolopoulos FV, Apergis EP, Poulilios AD, Papagelopoulos PJ, Zoubos AV, et al. Biomechanical properties of the scapholunate ligament and the importance of its portions in the capitate intrusion injury. Clin Biomech. 2011: 26: 819–823. Ref.: https://goo.gl/DEYnws
  5. Kitay A, Wolfe SW. Scapholunate instability: Current concepts in diagnosis and management. J Hand Surg Am. 2008; 33: 998-1013. Ref.: https://goo.gl/Ceim2t
  6. Hofstede DJ, Ritt MJPF, Bos KE. Tarsal autografts for reconstruction of the scapholunate interosseous ligament: A biomechanical study, J Hand Surg Am. 1999; 24: 968-976. Ref.: https://goo.gl/XwCVco
  7. Müller M, Reik M, Sauerbier M, Germann G. A new bone-ligament-bone autograft from the plantar plates of the toes and its potential use in scapholunate reconstruction: An anatomical study. Ann Plast Surg. 2008; 61: 463–467. Ref.: https://goo.gl/cGVtzw
  8. Shin SS, Moore DC, McGovern RD, Weiss AP. Scapholunate ligament reconstruction using a bone-retinaculum-bone autograft: A biomechanic and histologic study. J Hand Surg Am. 1998; 23: 216–221. Ref.: https://goo.gl/shZVaA
  9. Svoboda SJ, Eglseder WA Jr, Belkoff SM. Autografts from the foot for reconstruction of the scapholunate interosseous ligament. J Hand Surg Am. 1995; 20: 980–985. Ref.: https://goo.gl/7Yg91w
  10. Weiss AP. Scapholunate Ligament Reconstruction Using a Bone-Retinaculum-Bone Autograft. J Hand Surg Am. 1998; 23A: 261–264. Ref.: https://goo.gl/VW4Eas
  11. Harvey EJ, Hanel D, Knight JB, Tencer AF. Autograft replacements for the scapholunate ligament: A biomechanical comparison of hand-based autografts. J Hand Surg Am. 1999; 24: 963-967. Ref.: https://goo.gl/amJypm
  12. Brunelli GA, Brunelli GR. A new technique to correct carpal instability with scaphoid rotary subluxation: a preliminary report. J Hand Surg Am. 1995; 20: S82-85. Ref.: https://goo.gl/CuWnw1
  13. McGrath T, Zivaljevic N. New Technique for Anatomic Reconstruction of the Scapholunate Ligament with Tendon Graft and Swive Lock Anchor Fixation: A Biomechanical Cadaveric Study: Not a clinical study. J Hand Surg Am. 2012; 37: 13. Ref.: https://goo.gl/bVDhbN
  14. Endress R, Woon CY, Farnebo SJ, Behn A, Bronstein J, et al. Tissue-engineered collateral ligament composite allografts for scapholunate ligament reconstruction: an experimental study. J Hand Surg Am. 2012; 37: 1529-1537. Ref.: https://goo.gl/FkFoo1
  15. Eng K, Wagels M, Tham SK. Cadaveric scapholunate reconstruction using the ligament augmentation and reconstruction system. J Wrist Surg. 2014; 3: 192-197. Ref.: https://goo.gl/5TUhJw
  16. Gittard SD, Narayan RJ, Lusk J, Morel P, Stockmans F, et al. Rapid prototyping of scaphoid and lunate bones. Biotechnol J. 2009; 4: 129-134. Ref.: https://goo.gl/nQM159
  17. Costa PF, Vaquette C, Baldwin J, Chhaya M, Gomes ME, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow, Biofabrication. 2014; 6: 035006. Ref.: https://goo.gl/dDJ7Ki
  18. Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol. 2014; 41: 283-294. Ref.: https://goo.gl/LLWF5Z
  19. Hamlet SM, Vaquette C, Shah A, Hutmacher DW3, Ivanovski S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol. 2017; 44: 428-437. Ref.: https://goo.gl/U4SZ88
  20. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, et al. Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomater Sci Eng. 2019; 5: 318–328. Ref.: https://goo.gl/hwgrd2
  21. Sudheesh Kumar PT, Hashimi S, Saifzadeh S, Ivanovski S, Vaquette C. Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit. Mater Sci Eng C Mater Biol Appl. 2018; 92: 554-564. Ref.: https://goo.gl/GbFPrJ
  22. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, et al. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials. 2012; 33: 5560-5573. Ref.: https://goo.gl/rdCczh
  23. Alonso-Rasgado T, Zhang QH, Jimenez-Cruz D, Bailey C, Pinder E, et al. Evaluation of the performance of three tenodesis techniques for the treatment of scapholunate instability: flexion-extension and radial-ulnar deviation. Med Biol Eng Comput. 2018; 56: 1091-1105. Ref.: https://goo.gl/j6pJ98

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More